Peptide-Based Bioinspired Approach to Regrowing Multilayered Aprismatic Enamel
نویسندگان
چکیده
The gradual discovery of functional domains in native enamel matrix proteins has enabled the design of smart bioinspired peptides for tooth enamel mimetics and repair. In this study, we expanded upon the concept of biomineralization to design smaller amelogenin-inspired peptides with conserved functional domains for clinical translation. The synthetic peptides displayed a characteristic nanostructured scaffold reminiscent of 'nanospheres' seen in the enamel matrix and effectively controlled apatite nucleation in vitro resulting in the formation of smaller crystallites. Following application of the peptides to sectioned human molar teeth, a robust, oriented, synthetic aprismatic enamel was observed after 7 days of incubation in situ. There was a two-fold increase in the hardness and modulus of the regrown enamel-like apatite layers and an increase in the attachment of the tooth-regrown layer interface compared to control samples. Repeated peptide applications generated multiple enamel-like hydroxyapatite (HAP) layers of limited thickness produced by epitaxial growth in which c-axis oriented nanorods evolved on the surface of native enamel. We conclude that peptide analogues with active domains can effectively regulate the orientation of regenerated HAP layers to influence functional response. Moreover, this enamel biofabrication approach demonstrates the peptide-mediated growth of multiple microscale HAP arrays of organized microarchitecture with potential for enamel repair.
منابع مشابه
Influence of Enamel Thickness on Bleaching Efficacy: An In-Depth Color Analysis
This study evaluated the influence of different enamel thicknesses and bleaching agents on treatment efficacy in-depth by spectrophotometry color analysis. Eighty bovine dental fragments were previously stained in black tea solution and randomly assigned into eight groups (n=10), 1.75mm dentin thickness and different enamel thicknesses as follows: 0.5mm, 1.0mm planned, 1.0mm unplanned (aprismat...
متن کاملBiosynthesis and characterization of rabbit tooth enamel extracellular-matrix proteins.
Tooth enamel biomineralization is mediated by enamel proteins synthesized by ameloblast cells. Two classes of proteins have been described: enamelins and amelogenins. In lower vertebrates the absence of amelogenins is believed to give rise to aprismatic enamel; however, rabbit teeth, which apparently do not synthesize amelogenins, form prismatic enamel. The present study was designed to charact...
متن کاملDeletion of ameloblastin exon 6 is associated with amelogenesis imperfecta
Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI....
متن کاملDelamination of Two-Dimensional Functionally Graded Multilayered Non-Linear Elastic Beam - an Analytical Approach
Delamination fracture of a two-dimensional functionally graded multilayered four-point bending beam that exhibits non-linear behaviour of the material is analyzed. The fracture is studied analytically in terms of the strain energy release rate. The beam under consideration has an arbitrary number of layers. Each layer has individual thickness and material properties. A delamination crack is loc...
متن کاملA technique for restoring Class V caries in primary canines.
This article describes a technique for restoring Class V carious lesions in the primary dentition. The discussion will include the treatment of aprismatic enamel in primary teeth, bonding to dentin, and the restorative techniques that are available for composite bonding. A case report is presented that utilizes several modern techniques for restoring Class V lesions.
متن کامل